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Problem
The problem Uber faced was that the company’s pre-existing traffic estimates are wildly incor-
rect given the COVID-19 lockdown.

This is interesting because solving the problem will save the company millions of dollars and
allow us to reduce traffic congestion, which will help both the environment, and save people
time - who likes being stuck in traffic?

Hypothesis
We have two hypotheses:

1. We can predict average travel time with good (90%) accuracy using part or all of the
following features:

• Location coordinates (latitude and longitude)
• time (day)
• size of geometry objects (area of multipolygon objects)
• average speed
• street speed limit
• schoolzone proximity
• distance between origin and destination (calculated using coordinates)
• elevation (terrain)

2. Given spatial structuring using census tracts, linear relationships between features, and
limited data, linear regressionmodels will be better at predicting average speeds and travel
times than classification models (Random Forest in particular).

Predicting travel times will address Uber’s need for a new model, and if we prove that linear
regression models are better, then Uber can rely on a more successful model to estimate travel
times given limited data and features.

As for testing our hypothesis, our main metrics for measuring our hypothesis’s validity would
be RMSE (Root Mean Squared Error) and R2 score for our linear models, and simple accuracy
for classification models. If our R2 score is much lower than the accuracy, then our hypothesis
will be rejected, and we will either need to change our feature set or accept the higher error.
Otherwise, we will fail to reject the hypothesis.

Results
We confirmed both of our hypotheses: our second model (Linear Regression) had an improve-
ment achieving 99.13%R2 score and RMSE of 2.11 seconds while the Random Forest Classifier
did much worse (50% accuracy) in comparison.
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External Datasets
1. Daily travel times from Uber Movement data in March 2020 from San Francisco, by

census tract:
• This gives us the travel times (mean, upper bound, lower bound), days, and start and
end locations. Here are its distributions:

• This dataset was useful for our hypothesis because we saw that the day feature had a
negative relationship with travel time, and thus was an important feature to include.

• Additionally, we can see that certain locations had more travel time reduction than
others.

• We noticed the end locations of San Jose, Santa Clara, and Sunnyvale had the most
travel time reduction.

2. Daily traffic speeds from Uber Movement data in Q1 2020 from San Francisco, between
OSM nodes

• It describes daily average speeds along Uber ride paths. (This dataset is the con-
densed version of Uber’s hourly data)

• Features:
– The starting node/point
– The ending node/point
– The nth day of March 2020 (eg: day 2 means March 2, 2020)
– The average speed between the start and end nodes.
– Below is its distribution:

• This dataset was useful for our hypothesis becausewe directly saw how speed related
to the other features of the dataset.

• In particular, we used it to compare how plus codes effectiveness versus census
tracts, by comparing how uniform each cluster of the respective spatial structure
was.

3. Census tracts dividing San Francisco by GPS coordinates
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• This dataset further divides regions of interest into smaller zones.
• Features:

– The name with which the geographical region is referred to.
– Geometry: A polygon formed by points demarcating the geographical region
wherein each point is in the form of (longitude, latitude).

• This is useful for our hypothesis because we can use smaller regions as features in
our hypothesis modelling, along with their geographical coordinates.

• Combining this dataset with the data on average speeds and displaying the results on
a map shows lower average speeds in the city centre of San Francisco accompanied
by gradually increasing average speeds away from the city, in suburbs and larger
neighbourhoods.

4. Mapping from OSM nodes to GPS coordinates
• This was used with the other datasets to attach GPS coordinates to the Uber start and
end nodes/positions.

• This was necessary to create heatmap visualizations and compare speeds based on
location.

5. Speed Limit Dataset for San Francisco street segments:
• https://data.sfgov.org/Transportation/Speed-Limits-per-Street-Segment/3t7b-gebn

6. Elevation
• https://data.sfgov.org/Energy-and-Environment/Elevation-Contours/rnbg-2qxw
• https://www.kaggle.com/elmadj/analyzing-the-sf-fire-department-calls/data
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Exploratory Data Analysis
We explored how lockdown affected travel times by graphing the averages of the mean, upper
bound, and lower bound travel times, for each day.Clearly, from the graph of the various travel
times, we can see that average travel time was decreasing overall, with a sharp spike around
the 17th, when lockdown was imposed. Interestingly, travel time decrease was much steeper
pre lockdown, and almost plateaued after the initial spike from imposing lockdown. We can
see that the mean, upper, and lower bound for travel times follow the same relationship. This
further reinforced the fact that day was a key feature that we should include in our model, and
most likely will be the most important feature, which we can verify via PCA or regularization.

To investigate how destination travel times were affected by lockdown, we explored how lo-
cation impacts travel time by creating three separate groupby’s - address, neighborhood, and
city. This involved regexing the address, which also held the neighborhood, as well as the city.
From these groupby’s, we plotted the pre lockdown minus the post lockdown travel time for
each group, averaged over the entire month. We also created heatmaps for these groups. Below
is one of the three groupby visualizations.
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Lighter colors represent shorter average travel time, and the red dot is the starting point of all
travel. The address visualization showed that for the most part, as we travel away from the main
city the average travel time increases. Generally, areas that were very close to the starting point
did not seem to have much of a change in average travel times, confirming from our hypothesis
that location could be a key feature in determining traffic speed. Interestingly, the northwest
region has much longer times, but the southeast region of the map has much shorter times.
This is likely because the northwest has a hospital, which is more active in COVID times. We
see certain neighborhoods, such as in Sunnyvale, have more differences than others. Again,
location, in particular certain groupings of locations, may be key features in predicting average
speed, per our hypothesis.

This brought up more questions about the data:

• What locational grouping were the best predictors? Although the above showed certain
locations had significant differences, some locations were similar travel times compared
to others. We may need to do some more regex/clustering to see if we can surpass census
tracts.

• How could we visualize more regions? (Getting it to work for the heatmaps was hard,
and we don’t have API knowledge/datasets)

• How would these heatmaps look like outside SF, or even the US.
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First Model
This model uses multivariate linear regression (supervised) to predict/output mean travel time.
For this model, to see how we would do on different dataset sizes, and because using the full
dataset killed the kernel due to a merge, we sampled from our dataset and treated that sample as
our true dataset. The train-test split is 90-10 since we do not have too much data. This dataset
was created by merging speeds_to_tract with times_to_tract.
For all inputs, a row in our data is an uber trip between two census tracts.
Inputs and explanations:

• Euclidean distance - The exact route of the trip was unavailable, so the straight line dis-
tance was chosen as a reasonable approximation

• Day - May not be the best feature but as we entered late-March, travel time decreased.
May only be reliable for the March period.

• Area of destination’s polygon - The larger the destination, the more area that could be
traveled. Plus, perhaps the size of the census tract could indicate if it’s rural or urban
(urban tends to be more crowded, with larger travel times per distance)

• Area of origin’s polygon - We thought this would make a difference but then realized all
the origins are the same. Thus, this was dropped but would be useful otherwise.

• Weekday Indicator - Generally, weekdays tend to bemore crowded in pre-lockdown times.
Perhaps that might change with lockdown since people are cooped up inside, which could
lead to more weekend traffic post-lockdown.

• Lower Bound Travel Time (Seconds)*

• Upper Bound Travel Time (Seconds)*

*Upper/lower bound travel times would be “cheating” since those are similar to what we’re
estimating. Tried using them as features in a separate model.
Since we did not have an abundance of features, we did not perform cross validation, since this
is more useful if we want to filter out features. This is also why we included day as a feature.
We chose linear regression since we noticed linear relationships between travel time and our
inputs. Below is more concrete evidence for why we chose certain features:

• Linearizing Euclidean Distance by square rooting:
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• Linearizing Area Destination using log:

However, others simply could not be transformed into a relatively linear relationship:

• Area of the origin: will always be the same because all our trips originate from one spot.

• Day: will probably not be easily transformed due to the amount of variance it has (it is
probably doable, with a function that squashes the lower left up). However, we didn’t
bother since day wasn’t really a good feature to rely on.

• Weekdays: may be better for logistic regression, but we see they did indeed have lower
travel times.
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First Model Evaluation and Analysis
This model was evaluated according to its R2 score and Root Mean Squared Error (in seconds).
These are appropriate measures because R2 measures how linearly related the predicted and
actual values are, which is what we are looking for in a linear regression model (the closer R2

is to 1, the better the prediction). RMSE allows us to quantify in real world terms how far off
our values are on average.

The naive implementation (no transformations, 100 samples) was inefficient, with an R2 score
of 0.737, and test R2 score of 0.294, and RMSE of 289 seconds. This was terrible, since the
average of mean travel times is 717 seconds, so our RMSE was 40% of our trip. We would
be better off asking the locals how long it takes to get from point A to point B. Plus, .294 is
abysmally small, indicating we couldn’t predict travel time accurately.

Increasing the number of samples had better results (300 samples): train and test R2 score in-
creased to 0.781 and 0.758, respectively, with an RMSE of 173 seconds. However, this means
that any variations in the data threw off this naive model by a lot.

For the largest sample size we could use without crashing the kernel (2000), the R2 score was
0.753 for both train and test. Here is predicted vs actual mean travel time for the naive imple-
mentation:

Takeaway/Connection to Project: The red line is where we want points to be, because then we
are solving Uber’s problem of predicting mean travel time from A to B. Although the model
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isn’t bad, we can clearly see that a lot of points are close to the line, so our model predictions
aren’t quite useless, especially considering how little features we have. However, the data is a
little wave-y, motivating the following:

Improvement 1:
Problem: Again, since some of our data was not linearly related without transformations, we
got the waviness above. The EDA from above led to these improvements.
Solution: Transforming the data (log, square root), we get the following plot of predicted vs
actual travel time for 2000 samples:

Takeaway: We can also clearly see that the points are closer to the line, and less wavy.
The RMSE for the model on 2000 samples is about 150.5 seconds, which is 2.5 minutes. This
is not bad since the average mean travel time is 717 seconds, so this error is about 21% of the
average mean trip time.
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Result: As expected, our accuracy improves, but we see 200 samples actually did really well.
Interestingly as well, we see that as our dataset grows, our test R2 starts to fall and converge at
around slightly below .8 (at 2000 samples it is .806, which is a 5% improvement over our naive
model).

This is interesting because the fact that R2 doesn’t continue to decrease indicates our model is
probably robust against the size of the dataset, despite the fact that we had to cut 80% of our
data due to lack of memory.

Connection to project: Again, we are trying to estimate within the constraints of our memory -
as sample size increases, the dataset gets closer to the actual dataset. The above shows that we
are doing fine in that regard.

Improvement 2:

Problem: We still could not really improve accuracy to consistently hit 90%, even with our
transformations. Thus, we switched to removing outliers could help, since they tend to drag the
line away from other points.

Solution: From our scatterplots, we saw that perhaps we could shave some of Euclidean Dis-
tance, dropping everything from 1.23 and beyond, because of the below graph. Moreover, larger
Euclidean distances may have shortcuts or less straight routes between the origin and destina-
tion, so they could resemble outlier-like points.

Result: Our new RMSE is 152.18, which is about 1.8 seconds higher than without removing
outliers. This did not work likely due to the sample used in the scatter plot not being represen-
tative of the population dataframe and because minimizing the error of the non-outliers did not
offset the increase in error of the outliers. Overall, the tradeoff is probably not worth it, since
we have no significant change in RMSE.

Improvement 3:

Problem: We still wanted to consistently hit 90%, and our next guess was some features, such
as day, were doing more harm than good.

Solution: We tried using Lasso regression rather than outright dropping features. We wanted to
limit the penalty of having a complicated model, motivating our choice of alpha to be between
0.8 and 1.2.
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Results: It turns out the default alpha 1.0 resulted in the best RMSE of 152.805, which did not
beat our RMSE of 150.5 from earlier. Our understanding is that the day did not actually harm
anything, though it would be interesting to see if this is the case with data beyond March. Not
worth doing since, again, no significant change in RMSE.

Overall, these improvements weren’t really good, but they are very effective for the second
model.
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Second Model
This model uses multivariate Linear Regression with LASSO regularization. We used this since,
again, we noticed linear relationships between travel time and input variables - this time we will
predict travel time from past travel times, since our features above weren’t enough. We also
used the same data to try classification (further down).
Inputs and explanations:

• average travel time from X previous days - to help predict future travel times.

• average speed (mph) from the X previous days - correlated with travel time

• Great Circle distance from origin to destination (miles) - same as the first model, but more
accurate in terms of latitude and longitude using Haversine formula (2. Wikipedia).

• Area of the OSM node location - same as first model

• Elevation Change - flatter is generally faster travel times

• Speed Limits - lower means slower travel times

• Is in schoolzone - usually indicates slower travel times

These features were based on the starting location 300 Hayes Street, Civic Center.
Used following datasets:

• Daily traffic speeds from Uber Movement data in Q1 2020 (San Francisco)

– Feature-engineered the dataset by converting to a time series (described in the guided
section). This allows us to include a specified amount of post lockdown days data
in the training set.

• Daily travel times from Hayes Valley to all other census tracts around San Francisco in
March 2020

– Converted to a time series.

Outputs and explanations:
We predicted average travel time since the lockdown had a (naturally) significant effect on travel
times.
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Above is a scatter plot showing the correlation between the travel time from 1 day ago vs the
next day. The R2 score was 0.9726 suggesting these two variables are highly correlated.Note
the y axis is the difference between a point’s travel time and the average travel time.

The following is a plot displaying the R2 scores for X days ago vs the day we are trying to
predict:

The overall trend is a decrease in R2 score as we get further away from the day we are trying
to predict. This is expected (note the y-axis ranges from 0.972 to 0.960). This is not a large
range, suggesting that even travel times from 10 days ago are still highly correlated with the
travel times of the day.

Lastly, below is a scatterplot displaying correlation between the average speed and travel time.
There is not a high correlation (R2 score of 0.5609):

Note: there are negative average speeds because the average speeds are the average speed for
each day minus an average speed for a movement ID (delta, same technique used with average
travel time).
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Model Evaluation Results:

As stated in the first model, this model was also evaluated according to its R2 score and RMSE
(in seconds). These are appropriate for the same reasons.

The resulting model yields a R2 score of 0.9367 with a RMSE of 51.44 seconds. The model
used an alpha value of 1 in order to avoid overfitting the test data and used data from 1-6 days
back. This is a great modelR2 score and RMSE value because theR2 score showed a high result
with the predicted vs actual travel times and a low RMSE. In comparison, the first model we
built had a R2 score of 0.753 with a RMSE of 173 seconds which is a significant improvement.

Takeaway/Connection to Project:

The line graph shows the RMSE score in seconds vs the amount of days we use in the model to
predict the average travel time. As we increase the amount of days used in our prediction model,
RMSE decreases. But when we use too many days, the RMSE increases - this concept is similar
to an ROC curve. The optimal value seems to be using 6 days ago. This connects to the project
by answering a potential question of whether older average travel time data would cloud the
predictions made by the model or not. And as the graph shows, older data can actually improve
model accuracy but using too much old data can negatively affect it. An optimum amount of
days must be determined in order to optimize the model.

The scatterplot shows the correlation between the predicted and actual average travel time. The
main takeaway is that the model predicts average travel time very well, but also shows that the
model has a couple points in the range that are far off the line. This motivates further model
improvements using classification or multiple models per Movement ID.

Improvement 1:

Problem: In the original model, we saw that there was a high accuracy in predicting the average
travel time but there seemed to be points that were still very off from their actual average time.
For example, one point was predicted to have an average of 300 seconds travel time but actually
had a 500-second travel time.
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Solution: We used Random Forest classification, with max depths of 1, 10, 20, 30, and infinite
(which actually did not crash the kernel, surprisingly), in the hopes that it might be able to capture
nonlinear relationships between variables, by grouping travel time into five minute intervals (i.e.
0-5, 5-10), believing it would allow the model to have a wider margin of error and yield a higher
accuracy. (Other than that, the inputs were identical to this model).

Results: Accuracy of around 0.90. This is not as good as our 0.9367 R2 value, likely because a
lot of the travel times were close to the classification cutoffs. For example, a cutoff of 5 minutes
could have multiple points close to this number, leading to easily incorrectly classifying points.
This is supported by the data, as roughly 60% of average travel times were within 90 seconds
of the cutoff values.

Furthermore, we saw that classifying by 1 minute intervals (which is closer to what linear re-
gression would predict, since linear regression predicts the exact minute) resulted in accuracy
at best around .53, which was pretty horrendous in comparison.

Moreover, classification is highly prone to overfitting, which is mitigated by having more fea-
tures and data. Since linear data will look like a staircase in terms of decision boundaries, this
explains why the test accuracy is so bad - the boundaries are too overfit. This supports our sec-
ond hypothesis that classification is not effective given the small number of features and data,
and the fact that there are linear relationships between our predicted variable and variables.

Model Improvement 2:

Problem: For the same reason as Improvement 1.

Solution: we decided that another approach could be to build multiple models for each Move-
ment ID. This could get rid of unnecessary data that would be clouding the model’s accuracy as
well as fit parameters specific to each ID (such as how many days back we should use to predict
travel time). Using this method, each Movement ID would have its own model with its own
best parameters which could help improve prediction accuracy.

Results: We saw the best R2 score yet of 0.9913 and a very low RMSE score of 2.11 seconds,
proving our first hypothesis. Although this will need some data for new Movement IDs, it is
very good at predicting once we get data.
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Future Work
Wewanted to try classification with more features, since we could get more “fitting” boundaries,
since not all our data is linear with our predicted variable. Specifically, some sort of clustering
by location seems like it could be a good idea, and we only tried comparing it to Random Forest,
not clustering, and perhaps this could disprove our second hypothesis.

We probably try more carefully removing outliers for even more accuracy, or finding more
features. It will obviously be hard to top 99.13% accuracy, but these could help our model be
more robust to further traffic changes.

Additionally, incorporating the population density of each census tract is another interesting
idea. We tried doing that but had issues with merging the existing census tract datasets to ex-
ternal ones, due to differing geometries and naming conventions, but it will likely be correlated
positively with travel time, and could improve accuracy even more.
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